

Picture credits: right: Yellow Boat-stock.adobe.com; top left: luchschenF-stock.adobe.com; bottom left: nordroden-stock.adobe.com

Market Report Chemical Recycling 2024

Plants & Projects - Technologies - Players - Trends

3rd revised edition, April 2024

ecoprog GmbH

Market Report Chemical Recycling 2024

Chemical recycling is a major hope for the future of plastics recycling, potentially offering the production of high quality recyclates, fighting downcycling and enabling the recycling of additional waste streams. The technology could be the key to complying to stricter rules in the circular economy such as the EU's Packaging and Packaging Waste Regulation (PPWR) recyclate quotas. Chemical recycling therefore has the potential to impact plastic production worldwide.

However, so far, the market environment for this technology remains unclear. Most countries lack dedicated regulations for chemical recycling; as a result, the overall recognition and recycling performance that can be considered are unknown. Within regulation discussions chemical recycling is often opposed due to its high energy demand and CO₂ footprint.

Against this background, chemical firms, waste disposers and start-ups started to plan and construct chemical recycling facilities, offering different technologies for different kinds of plastics, waste streams and recycling products.

Based on its long-time monitoring of the global waste business and its expert network within waste management, ecoprog edited its 3rd annual survey on the dynamic chemical recycling business.

The Market Report Chemical Recycling 2024 includes:

- A description of the technologies and implementation of chemical recycling.
- An analysis of key factors and trends in the global plastic production and recycling market with regard to chemical recycling.
- A detailed analysis of single country markets.
- An account of more than 150 chemical recycling plants and projects worldwide, including capacities, inputs and technologies (as far as known).
- An outlook in terms of their market regions and an analysis of the key competitors in this market.

In addition, you will get access to w&b Data (Chemical recycling module) for 1 year.

The database contains information on all plants and projects, including capacity, status, start of operation, technology, and more. This also includes a weekly updated project tracker and a list of active plants.

The study is available at a price from 3,400.– \in plus VAT. Subscribers of our waste & bio Infrastructure Monitor will receive a discount of at least 600.– \in . Please find detailed price and product information at the end of this extract.

Contact: Jonas Havel ecoprog GmbH +49 221 788 03 88 16 j.havel@ecoprog.com

Content

Pr	eface		9			
Ma	anagen	nent Summary	11			
1	Basics and Definition					
2	Technology overview					
	2.1 2.2 2.3	Sorting Excursus: Common (Material) Recycling Chemical Recycling 2.3.1 Pyrolysis 2.3.2 Gasification 2.3.3 Solvolysis 2.3.4 Enzymolysis 2.3.5 Dissolution	19 22 25 25 28 29 29 29			
3	Plasti	c market backgrounds	31			
	3.1 3.2 3.3	Production Processing Consumption	31 33 34			
4	Waste	e market backgrounds	37			
	 4.1 Waste amounts, sources 4.2 Collection, available waste streams 4.3 Waste treatment 4.4 Gate fees 					
5	Market drivers					
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Recycling targets Recyclate targets Soft targets Chemical vs Material recycling Recognition of chemical recycling Other market drivers Price development of recyclates	47 50 52 52 56 61 62			
6	Marke	st	65			
	6.1 6.2 6.3	Global asset Global projects Regional breakdown 6.3.1 Europe 6.3.2 Asia 6.3.3 Northern America 6.3.4 Rest of the world	65 66 67 67 72 76 79			

	6.4 Assumptions, outlook						
7	Competition 83						
	7.1	Technology companies	83				
	1.2	Project developers	80				
8	Regi	on and country markets	89				
	8.1	Asia	90				
		8.1.1 China	91				
		8.1.2 Japan	97				
		8.1.3 South Korea	104				
		8.1.4 Rest of Asia	112				
8.2 Australia & Pacific							
	8.2.1 Australia	118					
		8.2.2 Rest of Australia & Pacific	124				
	8.3 Europe						
		8.3.1 Belgium	126				
		8.3.2 France	131				
		8.3.3 Germany	140				
		8.3.4 Italy	150				
		8.3.5 Netherlands	157				
		8.3.6 Spain	172				
		8.3.7 United Kingdom	180				
		8.3.8 Rest of Europe	189				
	8.4	Northern America	200				
		8.4.1 USA	201				
		8.4.2 Rest of Northern America	217				
	8.5	Rest of the world	220				
Methodology 22							
Α	Abbreviations 227						
R	Register of plants and projects 229						

Market Report Chemical Recycling 2024 – Extract © ecoprog GmbH, www.ecoprog.com

List of figures

Figure 1: Fractional Distillation of Crude Oil	15
Figure 2: Classification of Recyclable plastics and their codes	16
Figure 3: Value chain of plastic recycling, overview	20
Figure 4: Examples of sorting technologies for plastic waste	21
Figure 5: Shredding	22
Figure 6: Examples of shredding and cleaning technologies	24
Figure 7: Chemical recycling technologies	26
Figure 8: Model pyrolysis feedstock	27
Figure 9: Chemical recycling technologies	30
Figure 10: Global production of plastics from 2016-2022 (in million metric tons)	32
Figure 11: Global production and forecast of thermoplastics 1980-2050	33
Figure 12: Sector-wise demand of plastics globally	34
Figure 13: Waste collection schemes	40
Figure 14: Post-consumer plastics waste collection by segment	42
Figure 15: MSW disposal by type of treatment	43
Figure 16: Treatment of plastic packaging waste in the EU 27	43
Figure 17: Overview on main market drivers	47
Figure 18: Waste hierarchy	48
Figure 19: Proposed recyclate quotas in the PPWD	51
Figure 20: Mechanical and chemical recycling process cycle	53
Figure 21: Input and output criterion	58
Figure 22: Mass balance approach	59
Figure 23: Development of Brent crude oil price from 2019 to 2024	61
Figure 24: Treatment of plastic packaging waste in the EU 27	63
Figure 25: Type of plants in the world	65
Figure 26: Type of projects in the world	66
Figure 27: Technology of projects in the world	66
Figure 28: Active plants and projects per region	67
Figure 29: Type of plants in Europe	68
Figure 30: Technology of plants in Europe	69
Figure 31: Type of projects in Europe	69
Figure 32: Technology of projects in Europe	70
Figure 33: Number of projects by country in Europe	71
Figure 34: Type of plants in Asia	72
Figure 35: Technology of plants in Asia	73
Figure 36: Type of projects in Asia	74
Figure 37: Technology of projects in Asia	74
Figure 38: Number of projects by country in Asia	75
Figure 39: Type of plants in Northern America	77
Figure 40: Technology of plants in Northern America	77
Figure 41: Type of projects in Northern America	78
Figure 42: Technology of projects in Northern America	78
Figure 43: Outlook capacity assumptions	80
Figure 44: Data on start of operation	80
- ·	

Figure 45: Capacity growth outlook	81
Figure 46: Most important technology providers in the world	84
Figure 47: List of technology companies	84
Figure 48: Waste management by operation in China	91
Figure 49: Map of plants and projects in China	92
Figure 50: Chemical recycling plants and projects in China	93
Figure 51: Companies in the Chemical Recycling Value Chain in China	94
Figure 52: Waste management by operation in Japan	97
Figure 53: Map of plants and projects in Japan	98
Figure 54: Chemical recycling plants and projects in Japan	99
Figure 55: Companies in the Chemical Recycling Value Chain in Japan	100
Figure 56: Waste management by operation in South Korea	104
Figure 57: Map of plants and projects in South Korea	105
Figure 58: Chemical recycling plants and projects in South Korea	106
Figure 59: Companies in the Chemical Recycling Value Chain in South Korea	107
Figure 60: Plants and projects in Rest of Asia	112
Figure 61: Waste management by operation in Australia	118
Figure 62: Map of plants and projects in Australia	119
Figure 63: Chemical recycling plants and projects in Australia	120
Figure 64: Companies in the Chemical Recycling Value Chain in Australia	120
Figure 65: Waste management by operation in Belgium	126
Figure 66: Map of plants and projects in Belgium	127
Figure 67: Plants and projects in Beiglum	128
Figure 68: Companies in the Chemical Recycling Value Chain in Beigium	129
Figure 69: Waste management by operation in France	131
Figure 70: Map of plants and projects in France	132
Figure 71: Plants and projects in France	134
Figure 72: Companies in the Chemical Recycling Value Chain in France	135
Figure 73. Waste management by operation in Germany	140
Figure 74. Map of plants and projects in Germany	141
Figure 75. Chemical recycling plants and projects in Germany	142
Figure 76. Companies in the Chemical Recycling Value Chain in Germany	144
Figure 77. Waste management by operation in Italy	150
Figure 70: Map of plants and projects in Italy	151
Figure 79. Flams and projects in italy Figure 80: Companies in the Chemical Recycling Value Chain in Italy	152
Figure 81: Waste management by operation in the Netherlands	153
Figure 82: Man of plants and projects in the Netherlands	157
Figure 83: Plants and projects in the Netherlands	150
Figure 84: Companies in the Chemical Recycling Value Chain in the Netherlands	162
Figure 85: Waste management by operation in Spain	102
Figure 86: Man of plants and projects in Spain	172
Figure 87: Plants and projects in Spain	173
Figure 88: Companies in the Chemical Recycling Value Chain in Italy	174
Figure 89: Waste management by operation in the LIK	120
Figure 90: Map of plants and projects in the UK	100
Figure 91: Plants and projects in the LIK	182
rigare ett riante and projecte in the ett	102

Figure 92: Companies in the Chemical Recycling Value Chain in the United Kingdom	184
Figure 93: Plants and projects in Rest of Europe	190
Figure 94: Waste management by operation in the USA	201
Figure 95: Map of plants and projects in the USA	202
Figure 96: Plants and projects in the USA	203
Figure 97: Companies in the Chemical Recycling Value Chain in the USA	205
Figure 98: Chemical recycling plants and projects in Rest of Northern America	217
Figure 99: Chemical recycling plants and projects in Rest of the world	220

Figure 3: Value chain of plastic recycling, overview

Scope of this study

Source: ecoprog

Reading sample country chapter 2, Technology overview

Dissolution is also a solvent-based technology, but the polymer is not broken down into its building units. The treated plastic waste is dissolved in the suitable solvent, while the additional components of the plastic waste, which need to be removed from the stream to reach virgin quality, remain undissolved and can subsequently be filtered out and therefore separated from the targeted polymer. These can include additives, pigments and other polymers. This process is rather a physical recycling process than a chemical one, as the polymer remains intact.

Technology	Targeted Polymers	Characteristics
Pyrolysis	Polyolefin rich plastic waste streams (PE/PP)	 + Can treat mixed and hard-to-recycle plastic streams -
Gasification		
Solvolysis		
Dissolution		
Enzymolysis		

Figure 9: Chemical recycling technologies

The main targeted polymer so far is PP, but also further types such as PS or PC can be treated.

Australia

Inhabitants [million]	25.69	Municipal waste [1,000 t/a]	14,000
Total plastic waste [1,000 t/a]	2,630	Current MSW recycling rate [%]	42%
Number of plants	2	Number of projects	3

Management Summary

Australia still heavily relies on landfilling, also for its plastic waste, and is far from reaching its recycling targets. Next to one operational small-scale plant, there are 2 projects aiming at commercial operation, one of them being an enzymolysis project.

Waste Management

For its waste management, Australia relies heavily on landfilling. According to the latest data, in the 2020-2021 period, more than 57% of MSW were landfilled, while about 42% were recycled – thermal treatment of waste does not play a role in Australia.

In 2019, Australia issued the National Waste Policy Action Plan, which sets the targets to reduce waste amounts per capita by 10% and reach an 80% recycling rate of MSW until 2030.

Regarding recycling of waste, the Chinese waste import ban in 2018 was a turning point in Australia. Australia used to ship large parts of its recyclables to China. Consequently, the development of recycling targets became a short-term target. Under the Recycling Waste and Reduction Act 2020, Australia in turn agreed on an export ban on different recyclable waste streams, including plastics.

For 2025, Australia has set the target to recycle (or compost) 70% of its plastic packaging. For the 2020-2021 period, the overall recycling rate for all types of plastic waste was only 18%, while the rest was landfilled. The total amount of plastic waste generated was 2.63 million tonnes, with about half of it coming from the Construction and Demolition waste stream.

In general, recyclables including plastic waste are collected through kerbside collection in a dry recyclables bin. However, soft plastics are not collected through that bin, but there are programs such as supermarket drop-offs for that type of plastic waste. The local governments are responsible for the waste collection services.

Plants 1 2 1

As of February 2024, there is one operational small-scale plant in Australia. Most likely, there are additional lab or pilot-scale plants which are not listed here.

Australian recycling company APR Plastics has installed a 365 t/a modular pyrolysis plant by German technology provider Biofabrik. Through its sister company APR Kerbside, the company is also involved in the collection of plastics.

Furthermore, Australian textile recycling company Blocktexx is operating its textile waste recycling plant in Logan. The company claims to use a chemical process to separate different fibres, i.e.

cotton and polyester, in a chemical process while they are mechanically recycled afterwards. Therefore, Blocktexx is not considered a chemical recycling company in the sense of this study.

Name	Plant / project	Operators / Partners	Start	Capacity (tpy)	Input / Output	Technology	Scale	Status
Dandenong	plant	APR Plastics	2022	365	mixed PC plastics to oil	Pyrolysis	Commercial	active
Logan	plant	BlockTexx	2024	10,000	other single streams to unknown	Unknown	Commercial	active
Altona	project	Licella	2024	20,000	mixed PC plastics to oil	Solvolysis	Commercial	approved
Melbourne	project	Samsara Eco	n/a	20,000	single PC plastics to (intermediate) chemical product	Enzymolysis	Commercial	planned

Figure 63: Chemical recycling plants and projects in Australia

Projects

As of February 2024, we know of 2 ongoing projects in Australia.

In Altona, near Melbourne, Australian technology company Licella Holdings plans to build a chemical recycling facility based on its catalytic hydrothermal reactor technology. Licella is founded by the inventor of this technology, while British company Mura Technology is a licensee of the technology platform. In October 2023, packaging producer Amcor as well as food company Mondelez have invested an undisclosed amount in Licella to realise the construction of the facility, which could be scaled up to a capacity of 120,000 t/a in the future. Already in December 2022, Licella received the development approval from the Environmental Protection Agency Victoria. Considering these factors, realisation of this project is highly likely.

Additionally, Australian technology company Samsara Eco plans to build a 20,000 t/a enzymolysis facility in Melbourne (only Carbios in France is also planning to apply enzymolysis technology). In November 2022, the company announced it had collected AUD 54 million (EUR 32.6 million, exchange rate as of February 2024) from different investors for the construction of the facility.

Melbourne

Dandenong

Altona

Industries Chemical Oil & Petrochemical Waste & Recycling Technology		Activity in Va Activity in Va assumed	alue Chain segme alue Chain segme	ent		
Company	Project development	Feedstock provision	Technology	Upgrading	Output purchaser / processor	Plants / Projects
Licella Holdings						Altona
APR Plastics						Dandenong

Figure 64: Companies in the Chemical Recycling Value Chain in Australia

Details on plants and projects

Note: This is just a snapshot. This data is continuously updated and accessible online at www.ecoprog.com. Customers of this report have access to this online data and downloads for 12 months.

Altona, Australia

Samsara Eco

Amcor

Biofabrik

Status: approved Input capacity (t/a): 20.000 Start of operation: 2024 Input: Packaging and plastic waste Output: Oil (Plasti-crude) and gas

Operator: Licella

Technology: solvolysis

Technology provider: Licella

Remarks: 08/23: Swiss packaging company Amcor Limited and US-based food company Mondelez International, Inc. have signed investment agreements on the plant. It is to initially process up to 20,000 tpy of waste and is expected to be scaled up to 70,000 tpy. A chemical recycling facility is being planned, with backing from producers like Amcor, Coles, iQ Renew, LyondellBasell and Nestlé. (...)

Dandenong, Australia

Status: active Input capacity (t/a): 365 Start of operation: 2024 Input: waste plastics Output: oil Operator: APR Plastics Technology: pyrolysis

Technology provider: Biofabrik Group.

Remarks: The unit supplied (WASTX P1000) by German company Biofabrik Group will implement pyrolysis to process LDPE, HDPE, and PP wastes. APR Plastics has installed the unit in its Dandenong South facility, Victoria. The company is planning to further upgrade and purchase new units from 2023 onwards.

Logan, Australia

Status: active Input capacity (t/a): 10.000 Start of operation: 2024

Input: textile waste

Operator: BlockTexx Investment: EUR 3.5 million

Technology: unknown.

Remarks: The chemical recycling plant should start operations within three years. The Queensland and the Federal Government each provided AUD 1 million, while the remaining AUD 3.5 million were raised from private investors. The company developed its process in partnership with the Queensland University of Technology. Blocktexx, as the source further indicates, has already started works on the project.

Melbourne, Australia

Status: planned Input capacity (t/a): 20.000

Input: waste plastics Output: monomers

Operator: Samsara Eco

Investment: AUD 6 million

Technology: solvolysis Technology provider: Samsara.

Remarks: With their own developed enzyme-based technology, the start-up will be able to process plastic materials back into their monomers, which can later be upcycled. Samsara had raised AUD 6 million (EUR 4.06 million) for the construction of the facility from investors.

Parkes, Australia Status: planned Input capacity (t/a): 200.000 Start of operation: 2025 Input: waste plastics Output: renewable fuels and wax Operator: Brightmark Investment: EUR 172.4 million Technology: pyrolysis Technology provider: Brightmark Remarks: To be constructed in the Parkes Special Activation Precinct. Brightmark will use a thermochemical recycling technology to recycle plastics.

Prices and product information

You can order the study at ecoprog.com

Prices:

- Single-user version, 3,400.- €*
- Company version, 6,800.- €*
- Corporate version, price on request

Product information:

Single-user version:	Personal copy (personalised and password-protected PDF file, sent via email).
Company version:	Company-wide copy (legal entity), PDF file, sent via email.
Corporate version:	Copies for different, but legally connected companies (e.g. sister companies, investments abroad). The price depends on the number of companies and persons

Add-on:

Includes <u>12-month free access</u> to waste & bio Data (Chemical recycling module) with Excel downloads of Project Tracker + List of Active Plants.

Subscribers of ecoprog's <u>waste & bio Infrastructure Monitor</u> will receive a discount of $600.- \in (1,200.- \in \text{ for company versions})$.

Options:

Additionally, you can order all detailed information on plants and projects in MS Excel (only in combination with a company or corporate version): $3,400- \in *$

Additionally, you can order a printed copy: 150.- €*

Find all our prices at a glance, including all discounts here.

* plus 19% VAT for customers within Germany and EU customers without a VAT ID.

ecoprog GmbH • Krefelder Str. 18 • 50670 Cologne, Germany • +49 221 788 03 88 0 • District Court Cologne, # HRB 56660 • VAT ID: DE814576618 • info@ecoprog.com • www.ecoprog.com