

Picture credits: top left: Arno Senoner, Unsplash; top right: Ruben Hanssen, Unsplash; bottom: by courtesy of Standardkessel Baumgarte GmbH

Extract

Biomass to Energy

The World Market for BtE Plants 2025/2026

16th edition, 2025

ecoprog GmbH

Biomass to Energy 2025/2026

The leading standard reference for the global Biomass to Energy industry. The 16th edition includes:

- Analysis of more than 5,000 biomass plants and 700 projects worldwide
- Global market outlook 2025–2034, covering new installations, shutdowns and investment volumes based on over 500 cost examples
- Country-level analyses for 50 key biomass markets, including market factors, support schemes, existing plant assets and project pipelines
- Investment and operating costs, revenues, and exemplary project calculations
- Overview of key operators and technology providers, including market shares

In addition, the study includes 1-year access to **ecoprog's waste & bio Data** (BtE module). The database contains details on all plants and projects, including capacity, status, start of operation, technology and more. This also includes the weekly updated BtE Project Tracker and a list of active plants.

The study is available from **3,400.- € (net)**.

Contact

Nikolas Buchenau
ecoprog GmbH
+49 221 788 03 88 19
n.buchenau@ecoprog.com

[Read more on ecoprog.com](#)

[waste & bio Data, trial version](#)

[Order form with pricing information](#)

Contents

Preface.....	17
Management summary.....	19
Highlights 2025	23
1 Plant portfolio	25
1.1 Global plant portfolio	25
1.2 Europe	30
1.3 Asia	35
1.4 South & Central America	39
1.5 North America	42
1.6 Australia & Pacific	45
1.7 Africa & Middle East	47
2 Market outlook until 2034.....	51
2.1 Global outlook	51
2.2 Europe	55
2.3 Asia	58
2.4 South & Central America	61
2.5 North America	63
2.6 Australia & Pacific	64
2.7 Africa & Middle East	65
3 Competition.....	67
3.1 Operator segment	67
3.2 Technology provider segment	70
4 National markets	75
4.1 Africa & Middle East	75
Côte d'Ivoire	75
South Africa	80
Rest of Africa & Middle East	85
4.2 Asia	91
China	91
India	121
Indonesia	146
Japan	152
Malaysia	169
Philippines	176
South Korea	184
Taiwan	191
Thailand	195

	Vietnam	206	Poland	378	
	Rest of Asia	213	Portugal	387	
4.3	Australia & Pacific	218	Romania	394	
	Australia	218	Serbia	399	
	Rest of Australia & Pacific	224	Slovakia	404	
4.4	Europe	227	Slovenia	409	
	Austria	227	Spain	414	
	Belgium	239	Sweden	424	
	Bulgaria	248	Switzerland	436	
	Croatia	253	Turkey	445	
	Czech Republic	260	United Kingdom	453	
	Denmark	267	Rest of Europe	466	
	Estonia	274	4.5	North America	472
	Finland	279		Canada	472
	France	291		USA	481
	Germany	306		Rest of North America	496
	Hungary	328	4.6	South & Central America	497
	Ireland	333		Argentina	497
	Italy	338		Brazil	504
	Latvia	352		Chile	531
	Lithuania	358		Mexico	538
	Netherlands	363		Uruguay	545
	Norway	372		Rest of South & Central America	549
5	Scope			555	
5.1	Plant type, character and size			555	
5.2	Biomass within the energy business			556	
5.3	Biomass fuels			557	
5.4	Regional breakdown			560	
6	Technology			561	
6.1	Fuel delivery and processing			561	
6.2	Combustion			563	
6.3	Energy generation			567	
6.4	Flue gas cleaning			567	
6.5	Carbon capture, storage and utilisation			568	

7	The economy of BtE plants	571
7.1	Investment costs	571
7.2	Operational costs	575
7.3	Revenues	577
8	Framework and market drivers	579
8.1	Economic viability and biomass potential	579
8.2	Subsidies for BtE	583
8.3	Carbon pricing	585
8.4	Bioenergy with Carbon Capture and Storage	586
8.5	Other types of political support	588
8.6	Environmental issues related to BtE	589
8.7	Coal phase-out and heat transition in Europe	594
	Sources and methodology	597
	Glossary	599
	Annex A: Plant and project database	601
	Annex B: Forecast data	603

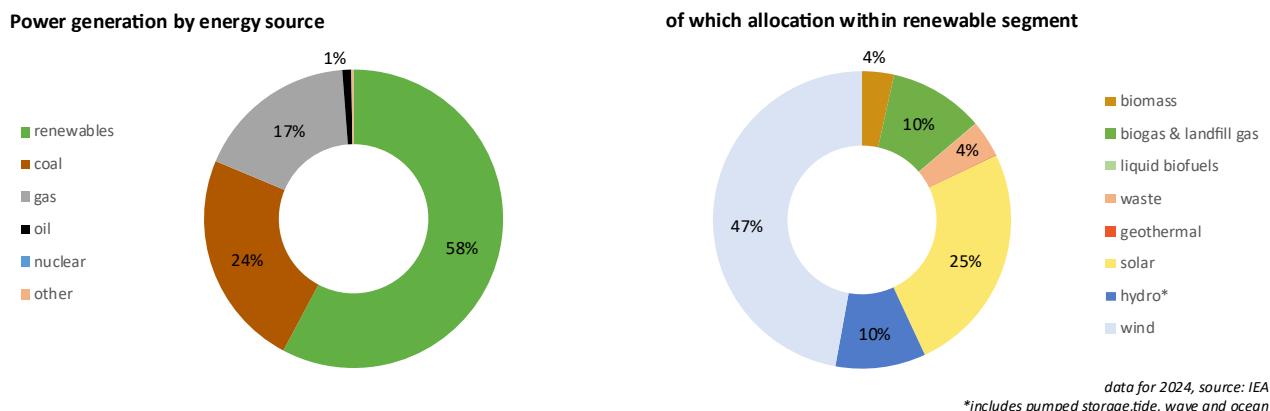
Japan

Update: 10-2025

Key figures			
Population 2023 [million]	124.37	Number of BtE plants	[...]
Target: biomass electricity generation (2030) [TWh]	47	Installed biomass power capacity [MW _{el}]	[...]
Electricity from biomass 2024 [GWh]	38,276	Biomass share in electricity generation 2024 [%]	3.90
<i>Forecast 2025-2034</i>		<i>Forecast 2025-2034</i>	
Total market investment [million EUR]	[...]	Added capacity [MW _{el}]	[...]

Management summary

Japan remains one of the most dynamic BtE markets worldwide. A large project pipeline will continue to cause strong development in the coming years. However, the rate of development will slow down beyond 2030 due to [...]


Background, market factors, legal framework

Japan remains reliant upon imported fossil fuels, mainly coal and gas. Renewables accounted for 27% of electricity production in 2024, with solar and large hydro making up the biggest shares. Biomass contributed around 4% of total power production in 2024.

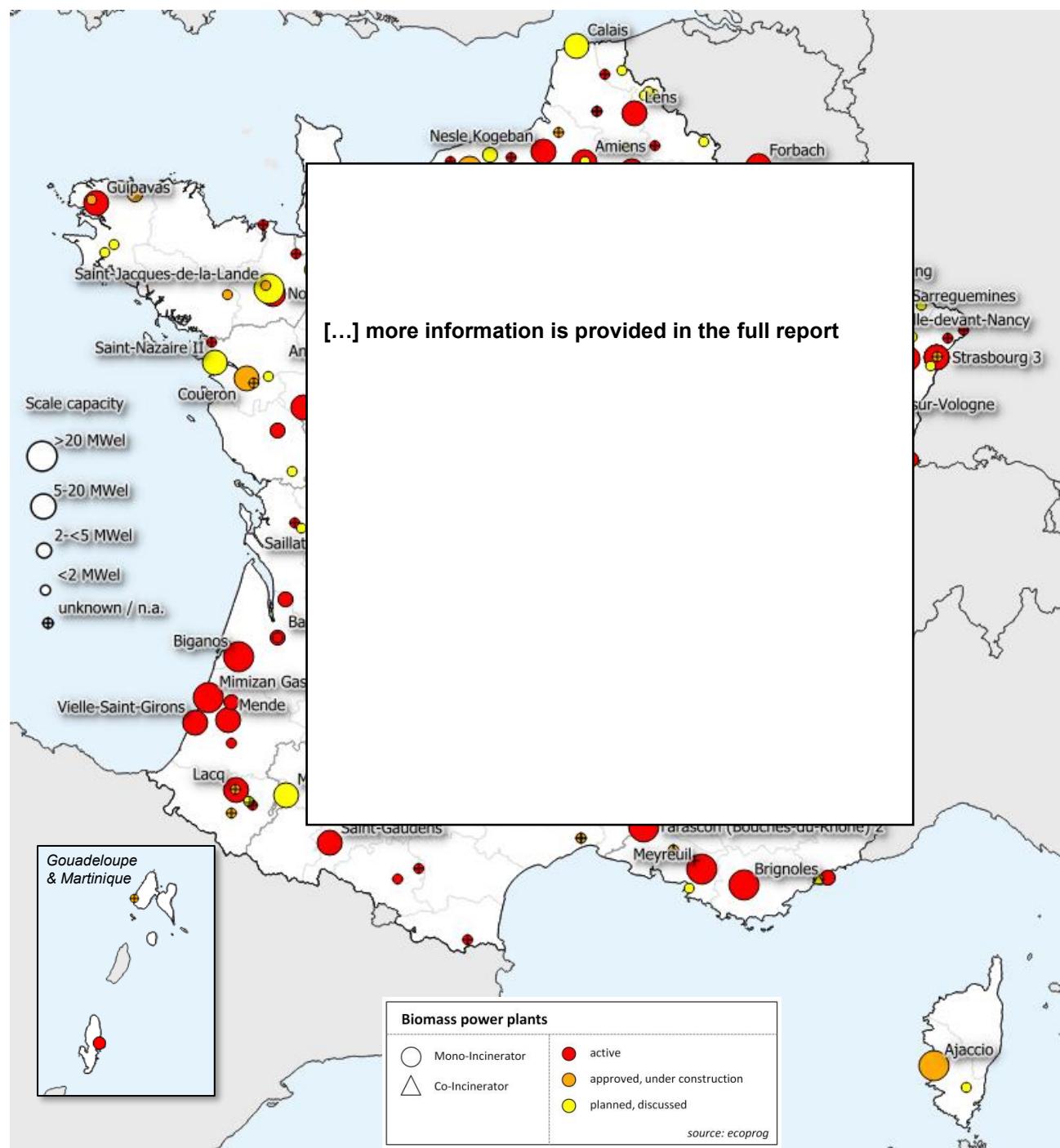
Japan aims to become carbon neutral by 2050. In its 6th Strategic Energy Plan, renewables are projected to account for about 37% of power production by 2030, and biomass specifically about 5% of production, equivalent to 47 TWh or 8 GW from about 33.7 TWh in 2022.

[...]

Figure 1: Electricity generation in Germany

Germany has considerable biomass resource potential, which has supported a strong bioenergy industry. Agricultural residues are mostly used in the country's large biogas sector. Residues from forestry are widely used in BtE plants. Industrial residues, mostly from the pulp & paper industry, and recycled waste wood also represent important fuels for BtE.

[...]


Germany's main support scheme for renewables is the EEG (Renewable Energy Act). The EEG formerly used FITs but has shifted towards competitive auctions as its main support mechanism. Auctions are technology-specific and there is a basket for biomass and biogas, with both existing plants and new projects eligible. Plants that run on recycled waste wood are gradually being excluded from EEG support. Recent EEG reforms have [...]

Biomass is also eligible for separate CHP tenders, but the generally lower tariff (7-12 EURct/kWh) has not been attractive to developers. In the heat segment, subsidies are available under [...]

Plant asset

We currently list a plant asset of X installed BtE plants in France, with a combined electricity generation capacity of at least X MW_{el}. The French fleet of BtE plants is relatively young and large in average size compared to other European countries. Almost all plants use wood residues as fuel. Some plants are located at pulp & paper sites. Many plants are either heat-only or operate in CHP mode and deliver heat to industry and residents.

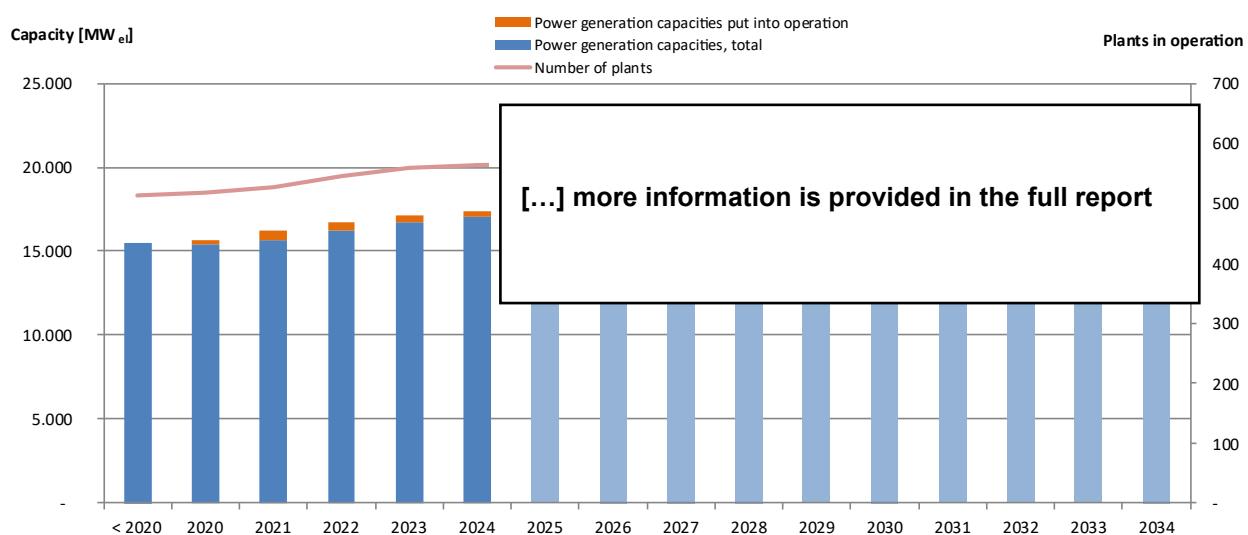
Figure 2: Map of plants and projects in France

For better visibility, only projects/plants ≥ 5 MW_{el} are labelled

Extract, Chapter 4, National markets, Brazil

Market development

In our database we currently list a total of **X** BtE projects and **X** GW capacity, thereof **X** projects and **X** GW under construction. Around half of the capacity is planned to be fuelled by agro-industrial residues (mostly sugarcane bagasse), while the other half is planned to be fuelled by black liquor or woody biomass. The project pipeline includes [...]


Figure 3: Project outlook Brazil

Name	Type	Project units	Capacity [MW _{el}]	Capacity [MW _{th}]	Start	Status
Acailândia 4	mono-incinerator	1	10.8	n/a	n/a	under construction
Adamantina	mono-incinerator	1	15	n/a	n/a	under construction
Mococa 2	mono-incinerator	1	25	n/a	n/a	under construction
[...]						
Canápolis 3	mono-incinerator	1	40	n/a	2029	approved
Charqueada	mono-incinerator	1	5	n/a	n/a	approved
[...] more information is provided in the full report						

As of December 2025. Further information on all projects is provided in our online database to which you have access.

For Brazil we expect continuous market development during the coming decade, triggered by the country's sugar and ethanol and pulp and paper industries. Large-scale CHP projects in these industries will drive development. [...]

Figure 4: Market forecast Brazil

Data estimated up until 2024 and forecasted from 2025 onwards, source: ecoprog

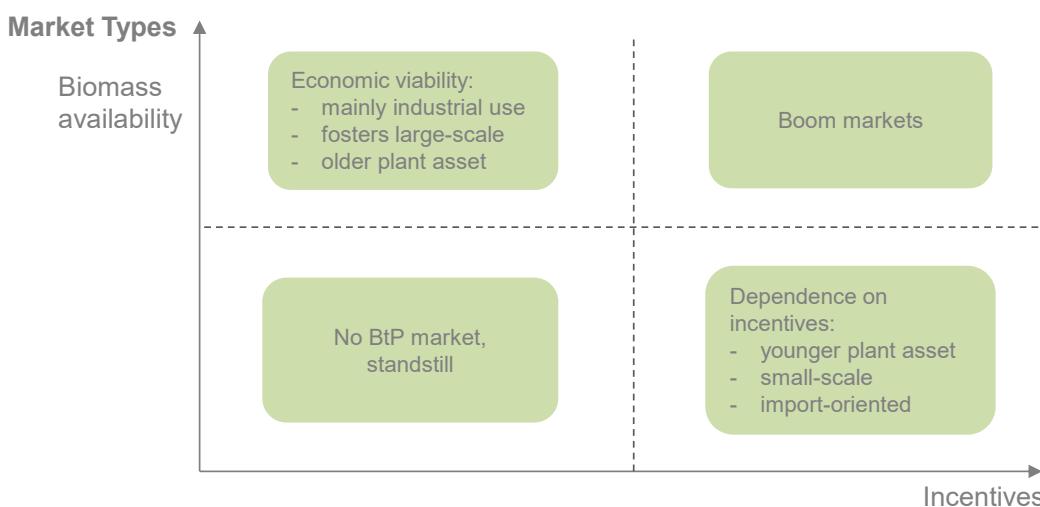
Competition

Most operators on Brazil's BtE market come from the sugar and ethanol industry. This includes, for example, Usina Caeté S.A./Carlos Lyra Group, Raizen and Biosev SA, and more recently Copersucar. Another large group of operators is from the pulp and paper industry, including e.g. Klabin Cellulose and Suzano S.A. Foreign utility companies are active as well, including French multinationals Veolia and Engie (through its subsidiary Engie Brasil Energia).

In the manufacturing segment, there is an established domestic supply chain. [...]

Active Plants

As of December 2025. You can find further information on all plants, such as specifications on technical equipment, manufacturer, or fuel, for 12 months at <https://ecoprog.com/plants/overview?type=biomas>. This database is updated every week. Please use your login credentials to access the database.

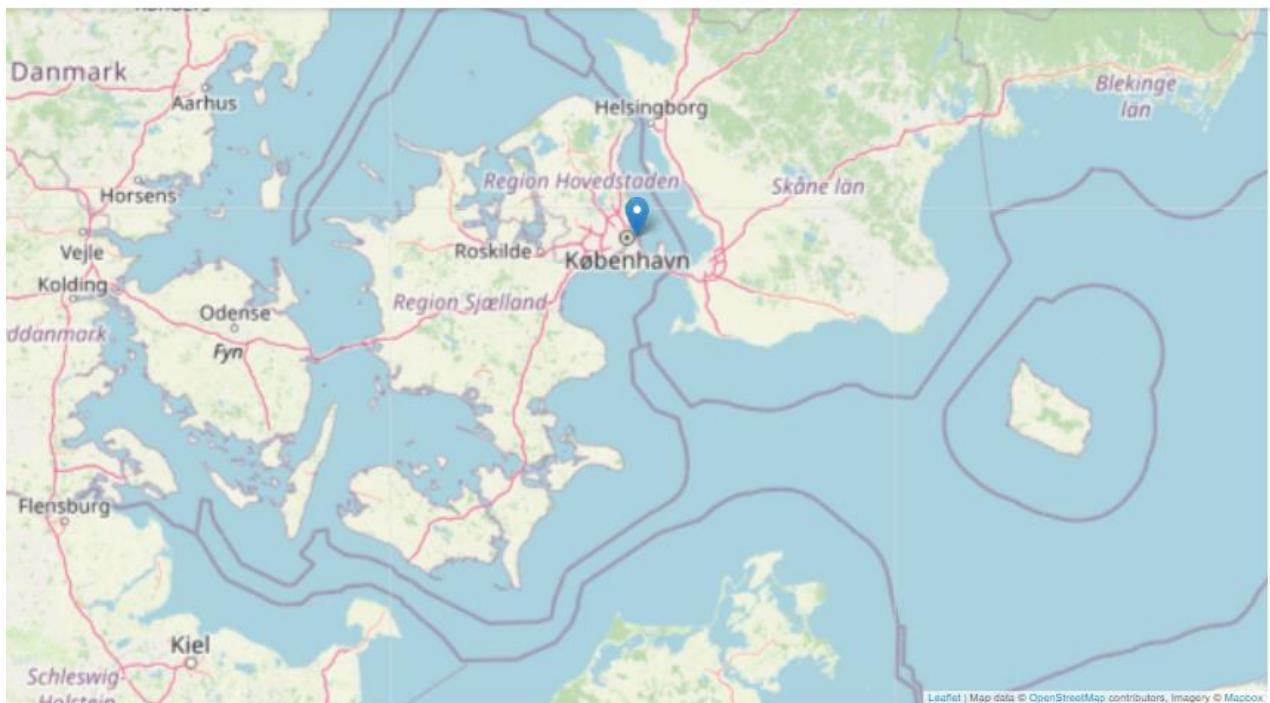

Name	Type	Active units	Operator	Capacity [MW _e]	Capacity [MW _{th}]	Start
Ajax 1	mono-incinerator	1	Energy+2000 Ltd.	0.7	n/a	2012
Ajax 2	mono-incinerator	1	n/a	25	n/a	2015
Armstrong 1	mono-incinerator	1	Tolko Industries Ltd.	20	n/a	2000
Atholville	co-incinerator	1	AV Cell	17	50	1985
			[...] more information is provided in the report			

8 Framework and market drivers

8.1 Economic viability and biomass potential

The two most important factors for the economic viability of a BtE plant are the availability of 1) biomass fuels and 2) subsidies. Based on these two factors, markets can be categorized into four types, examples for which can be found in the country chapters of this report.

Figure 5: BtE market types


Source: ecoprog

[...]

Biomass fuels generally have lower calorific value than fossil fuels. Disregarding emissions, it is often more profitable to incinerate coal or natural gas than biomass. Due to their lower calorific values, transporting biomass fuels is usually not economically viable and local availability is thus important.

Several preconditions have to be met for BtE to be economically viable without financial incentives. 1) The availability of larger biomass fuel amounts, without valuable alternative uses that compete for the biomass locally. 2) A high local energy demand, ideally for both heat and electricity. This energy demand is even more important if there are few alternative energy sources, e.g. at rural/remote sites.

Many pulp & paper sites provide these factors. They are located in rural areas close to where the wood is produced. At the same time, large amounts of black liquor are produced during pulp production, which has little alternative uses. Furthermore, large amounts of heat and electricity are needed for producing pulp and paper. Similar favourable conditions apply to other industries, e.g. the sugarcane bagasse and ethanol industry.

< 1/1 >

Category

- 1 Waste-to-Energy
- 2 MBT plants
- 3 Sorting Plants
 - 3.1 Dry Recyclables
 - 3.2 Packaging
 - 3.3 Plastics
 - 3.4 Metal
 - 3.5 Paper
 - 3.6 Glass
 - 3.7 Bulky Waste
 - 3.8 Batteries
 - 3.9 E-Scrap
 - 3.10 Construction & Demolition
 - 3.11 Other Sorting Plants
- 4 Recycling plants
 - 4.1 Plastics, material
 - 4.2 Plastics, chemical
 - 4.3 Paper
 - 4.4 Other Recycling Plants
- 5 Biomass-to-Power**
- 6 Anaerobic digestion
- 7 Hazardous waste

Plant

Name	Amagerværket
Country	Denmark
Type	Biomass to Energy
Province/Region	Hovedstaden
Status	active
Investments	EUR 150 million (new unit)
Start of operation	2010
Heat use category	district heating CHP
Input, capacity [t/a]	n/a
Input real	n/a
Input real (year of data)	n/a
Power generation capacity [MW]	219.00
Heat production capacity [MW]	251.00
Gross heat production [MW]	n/a
Mono-/Co-Incineration	mono-incinerator

Remarks: The Amagerværket went operational in 1971 as coal power plant with 4 units. One unit (unit 2) is operating on wood pellets. Another unit (unit 3) became operational in April 2020, after several delays of the start of operation and runs on wood chips.

As of August 2020, Danish utility Hofor A/S is tendering the procurement of an outdoor woodchip storage for its AMV4 biomass CHP unit.

Search

Country

Downloads

[BtP Project Tracker](#)
[BtP, List Of Active Plants](#)

Unit 1

Status	shut down
Start of operation	1972
End of operation	n/a
Unit fuel	straw pellets, oil
Fuel category	agricultural biomass
Technology	n/a
Mono-/Co-Incineration	co-incinerator

ecoprog's [waste & bio Data](#). Please find a trial version [here](#).